Preliminary Communication

The co-stacking of a planar metal complex and a novel 1,3-dithiole:
 the synthesis and crystal structure of $\left[\mathrm{Pt}(\mathrm{mnt})(\mathrm{CNMe})_{2}\right] \cdot(\mathrm{NC})_{2} \mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{CNMe}$

Neil G. Connelly, John G. Crossley, A. Guy Orpen and Henrietta Salter
School of Chemistry, University of Bristol, Bristol BS8 1TS (UK)
(Received April 13, 1994)

Abstract

The reaction of $\left.\left[\mathrm{NBu}_{4}^{\mathrm{n}}\right]_{2} \mathrm{Cu}(\mathrm{mnt})_{2}\right]$ with $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]\left[\mathrm{PF}_{6}\right]_{2}$ gives $\left[\mathrm{Pt}(\mathrm{mnt})(\mathrm{CNMe})_{2}\right] \cdot(\mathrm{NC})_{2} \mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{CNMe}$, an X-ray study of which reveals co-stacking of neutral planar metal and organic molecules.

Key words: Platinum; Co-stacking; Crystal structure; Dithiole; Isocyanide

Introduction

We have recently described reactions in which square planar metal dithiolene anions $\left[\mathrm{M}(\mathrm{mnt})_{2}\right]^{z}$ (mnt $=\left[\mathrm{S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}\right]^{2-}, \mathrm{M}=\mathrm{Ni}, \mathrm{Pd}$, and $\mathrm{Pt}, z=-2 ; \mathrm{M}=\mathrm{Ni}$, Pd, Pt, and $\mathrm{Au}, z=-1$) and cationic isocyanide complexes $\left[M^{\prime}(\mathrm{CNMe})_{4}\right]^{++}\left(M^{\prime}=\mathrm{Pd}\right.$ and Pt$)$ give novel linear chain metal complexes such as $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]$ $\left[\mathrm{Pd}(\mathrm{mnt})_{2}\right],\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]\left[\mathrm{M}(\mathrm{mnt})_{2}\right]_{2}(\mathrm{M}=\mathrm{Pd}$ and Au$)$ [1], and [$\mathrm{M}(\mathrm{mnt})(\mathrm{CNMe})_{2}$] $(\mathrm{M}=\mathrm{Ni}$ and Pd$)$ [2]. These species, both charged and neutral, display a range of stacked and/or layered structures in the solid state. We now show that a similar reaction, between $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]^{2+}$ and $\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]^{2-}$, results in rearrangement and interligand coupling to give $[\mathrm{Pt}(\mathrm{mnt})-$ $\left.(\mathrm{CNMe})_{2}\right] \cdot(\mathrm{NC})_{2} \mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{CNMe}$ (1) in which the neutral square planar metal complex co-stacks with a novel organic heterocycle.

Results and Discussion

When a mixture of $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]\left[\mathrm{PF}_{6}\right]_{2}(150 \mathrm{mg}, 0.23$ mmol) and $\left[\mathrm{NBu}_{4}^{\mathrm{n}}\right]_{2}\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]$ ($142 \mathrm{mg}, 0.17 \mathrm{mmol}$) was kept in $\mathrm{MeCN}\left(13 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ for 15 h , pale yellow

[^0]

Fig. 1. Part of one of the columns of 1 a and $\mathbf{1 b}$ which make up the crystal structure of 1. Important molecular geometry parameters include: bond lengths $(\AA), \operatorname{Pt}(1)-\mathrm{S}(1) 2.278(4), \mathrm{Pt}(1)-\mathrm{S}(2) 2.279(4)$, $\mathrm{Pt}(1)-\mathrm{C}(5)$ 1.940(16), $\mathrm{Pt}(1)-\mathrm{C}(6)$ 1.959(15), S(1)-C(1) 1.737(15), S(2)$\mathrm{C}(3) 1.748(14), \mathrm{S}(3)-\mathrm{C}(9) 1.704(15), \mathrm{S}(3)-\mathrm{C}(13) 1.822(17), \mathrm{S}(4)-\mathrm{C}(11)$ $1.724(13), \mathrm{S}(4)-\mathrm{C}(13) 1.791(18), \mathrm{N}(7)-\mathrm{C}(13) 1.22(2), \mathrm{N}(7)-\mathrm{C}(14)$ 1.48(2), C(9)-C(11) 1.32(2).
crystals were formed which were washed with dicthyl ether and air dried (yield $13.4 \mathrm{mg}, 13 \%$). The colour of the crystalline product, the absence of the expected $\nu(\mathrm{CN})$ band for the dianion, and the elemental analysis data (C, H, and N) clearly showed that the expected salt $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]$ had not been formed. In the absence of further useful spectroscopic information, an X-ray crystallographic study [3*] was carried out on (1).

The crystal structure analysis revealed that (1) consists of two near-planar molecular species, [$\mathrm{Pt}(\mathrm{mnt})$ (CNMe) ${ }_{2}$] (1a) and (NC$)_{2} \mathrm{C}_{2} \mathrm{~S}_{2} \mathrm{CNMe}$ (1b). The $\mathrm{Pt}-\mathrm{S}$ and $\mathrm{Pt}-\mathrm{C}$ distances are in reasonable accord with those determincd by EXAFS spectroscopy for a solid sample of pure 1a [2]. Molecules of 1a and 1b are arranged in columns with their molecular planes approximately parallel to one another and tilted relative to the crystallographic b axis (which is parallel to the column). The mean planes of $\mathbf{1 a}$ and $\mathbf{1 b}$ are inclined at 29.9° and

[^1]

Fig. 2. Part of the crystal structure of 1 showing the layer formed by aligned dimers of columns. Of the six columns shown, columns 2 and 3 , and 4 and 5 (numbering from left to right across the diagram) are linked by weak $S \cdots S$, and $S \cdots C N$ interactions (see text).
22.8° to the crystallographic b axis and at 7.1° to one another. The platinum atom of 1 la lies $3.58 \AA$ away from the 1 b mean plane and $\mathrm{C}(13)$ lies $3.36 \AA$ away from the 1 d mean plane. The column formed by alternating molecules of 1a and 1b is shown in Fig. 1 and a larger portion of the crystal structure in Fig. 2. The columns are associated in pairs by weak edge-to-edge intermolecular contacts in the molecular planes. The shortest inter-column $\mathrm{S} \cdots \mathrm{S}$ and $\mathrm{S} \cdots \mathrm{CN}$ distances (of between 3.75 and $3.90 \AA$) are between $S(1)$ in one column and $\mathrm{S}(3), \mathrm{C}(10)$ and $\mathrm{N}(5)$ of $\mathbf{1 b}$ in a symmetryrelated neighbouring column. It is notable that these interactions involve the sulphur atom (S(3)) on the edge of $\mathbf{1 b}$ away from the methyl group C(14). Similar edge-to-edge interactions involving mnt ligands are present in crystals of $\left[\mathrm{Pd}(\mathrm{mnt})(\mathrm{CNMe})_{2}\right.$] [2] and $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]\left[\mathrm{Au}(\mathrm{mnt})_{2}\right]_{2}[1]$. The pairs of columns in 1 are aligned in rows to form layers (see Fig. 2), and the entire crystal structure is assembled by superposition of these layers.

The preparation of the novel heterocycle ($\mathrm{NC}_{2}{ }_{2}{ }^{-}$ $\mathrm{C}_{2} \mathrm{~S}_{2}$ CNMe [(1b), 2-(methylimino)-4,5-dicyano-1,3-dithiole] from $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]^{2+}$ and $\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]^{2-}$ differs from previous synthetic routes [4] and involves a mechanism which must include electron-transfer; the 1,3-dithiole contains the elements of the isocyanide MeNC and the neutral species $\mathrm{S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}$ that is related formally to the dianionic mnt ligand of $\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]^{2-}$ by two-electron oxidation. As yet we have been unable to prepare 1b or analogues in the absence of $[\mathrm{Pt}(\mathrm{mnt})$ (CNMe) ${ }_{2}$]; there was no reaction between $\mathrm{Na}_{2} \mathrm{mnt}$ and $\mathrm{Cn}^{\mathrm{t}} \mathrm{Bu}$ in refluxing MeCN during 3 h nor between $\left[\mathrm{NBu}_{4}^{\mathrm{n}}\right]_{2}\left[\mathrm{Cu}(\mathrm{mnt})_{2}\right]$ and $\mathrm{CN}^{t} \mathrm{Bu}$ under the same conditions during 8 h . However, its planarity, its stacking with the planar metal complex $\left[\mathrm{Pt}(\mathrm{mnt})(\mathrm{CNMe})_{2}\right]$, and its delocalised structure suggest $\mathbf{1 b}$ to be a potential precursor for novel organic charge-transfer complexes.

Acknowledgements

We thank Johnson Matthey for a generous loan of platinum salts.

References and notes

1 N.G. Connelly, J.G. Crossley, A.G. Orpen and H. Salter, J. Chem. Soc., Chem. Commun., (1992) 1564.
2 N.G. Connelly, J.G. Crossley and A.G. Orpen, J. Chem. Soc., Chem. Commun., (1992) 1568.
3 Crystal Data for (1): $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{7} \mathrm{Pt}, M=598.6$, monoclinic, space group $P 2_{1} / n$ (non-standard No. 14), $a=14.252(5), b=7.926(3)$, $c=18.062(7) \AA, \beta=100.75(3)^{\circ}, V=2004.5(13) \AA^{3}, Z=4, D_{x}=1.98$ $\mathrm{gcm}^{-3}, \bar{\lambda}=0.71073 \AA, \mu=74.3 \mathrm{~cm}^{-1}, F(000)=1136, \mathrm{~T}=295 \mathrm{~K}$, crystal dimensions $0.15 \times 0.4 \times 0.7 \mathrm{~mm}$, final difference map features in range 1.6 to $-1.8 \mathrm{e}_{\AA^{-3}}$. Data were collected on a Nicolet P 3 m diffractometer for a unique portion of reciprocal space for $4<2 \theta<40^{\circ}$. The structure was solved by heavy atom methods and refined by full-matrix least-squares (shelxtl-plus, 166 variables) against F data corrected for absorption (transmission coefficients $0.95-0.12$) and extinction, to $R=0.049$ and $S=1.68$ for the 1604 observed $[I>2 \sigma(I)]$ unique data. Tables of atomic coordinates, bond lengths, bond angles and displacement parameters for 1 have been deposited with the Cambridge Crystallographic Data Centre.
4 H. Gotthardt, in A.R. Katritzky and C.W. Rees (eds.), Comprehensive Heterocyclic Chemistry, Vol-6, Chapter 4.32, Pergamon, Oxford, 1984.

[^0]: Correspondence to: Dr. N.G. Connelly.

[^1]: * Reference number with asterisk indicates a note in the list of references.

